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1. lntaodlactiron. The paper deals with homogeneous random point pro- 
cesses in Rn. Our aim is to obtain sufficient conditions for asymptotic 
normality of the number of points of a point process P in a ball when the 
radius tends to infinity. These condilions are formulated in terms of Palm 
distributions of the point process P. The proofs of the theorems stated below 
are based on the relation between the distribution P of a poinl process in R" 
and its Palm distribution due to Ambartzumlan [I]. In the one-dimensional 
ease these relations reduce to the socalled Palm-Khinchin formulae 123. 

2. Natation. Let M be the class of a11 countable subsets of R" such that 
any  EM has no cluster point in a bounded subset of Rn. 

Define N(B, m) to be the number of points in B n rn, where B is a 
bounded Borel set in Rn and r n ~  M.  

Denote by C the minimal a-algebra of subsets of M containing all subsets 
of the form [m: N ( B ,  mn) = k j ,  k  = 0 ,  1, 2, .  . . Any probability measure P on 
C describes a random point process. 

A random point process P is said to be homogeneous if, for any C E C ,  
P(tc) does not depend on t E ?; where T denotes the group of all translations 
of Rn and 

Further, we assume that for every bounded Borel set B in R" 

where (B( is the volume of B. In other words, we consider the finite intensity 
case. 



3, Main rmd$s. k t  S(u) be the sphere of volume u centred at the origin 
in RN. We coxtih~ider the random nuinber N (S(u))  of points of the process In 
S(v)  for large values of u. 

M ( s ( v ) )  is called asy~nazptotically ~rrurmal! if 

N ( S ( V ) )  i s  called k~caiiy mymgkoticaIly normal in variatiu~z if 

N ( S ( U ) )  is callkd locally asymptotically mrml if 

Note that each of the relations (31 and (4) impfies (2). It is known that 
under the assumption (1) the liPnit 

exists El]. 
We call this Emit the sphericai Palm distribution. This limit can be 

interpreted as the conditional probability d { N ( S ( V ) )  = k] under the con- 
dition that a point of the random process P lies on the boundary of the 
sphere S ( u ] .  By the Palm distribution we usually m a n  the conditional 
grobabiG$ of {N( s ( v ) )  = k )  under the condition that there is a point of the 
process P at the origin. The spherical Palm distribution canmbe found by 
integration of the usual Palm distribution over the boundary of the sphere 
S(u1 (see U1). 

The conditions for asymptotic normality will be given in terms of the 
variational distance 

We show that the above-mentioned types of asymptotic normality of 
.N(Sl(v)) are implied by various assumptions concerning the rate of conver- 
gence of ~ ( v )  to zero as o tends to infinity. In this sense the condition on 
the rate of convergence of ~ ( v )  to zero can replace the usanal mixing con- 
dition 131. 



In the sequel we prove the folIowirag theorems: 
THEOREM 1. {f 

then N(S( t , ) )  is asymptoticdly normal. 

then N ( S ( u ) )  is locally asymptutically normal in variation. 
T~EOREM 3. I f  

1 Y 
lip -- J up ju) du = 0, 
"-- J; 0 

then N(S( t l ) )  is locaIEy asymptotically normal. 
The proofs of these theorems are based on the following Ambirtzumian 

relations (see [I]): 

1 for k = 0, 
8 for k # 0 .  

Further, without loss of generality we can assume that d = 1. 
In the one-dimensional case, Theorems 1 and 2 were announced in [41. 

, The role of the Palm distribution in the problems related to asymptotic 
normality of N ( S  ( v ) )  was first noticed by W. V. Ambartzumian to whom 
Theorem I should be attributed. 

The author expresses his gratitude to Professor R. V. Ambartaumian for . 
suggesting the present topic. 

4. Rosf of Theorem I. Rewrite (7) in the form 
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We introduce the generating furadions 

for which from (8) we derive 

Hence we get 
U 

The characteristic function of the distribution [ P ~ ' , C V ) ]  can be obtained by 
substittiling z by ei'. Hence it is enough to show that for fixed s 

exp [ - it ,,,&I n .,,,,, (u) -+ exp i - t2/2/ as v -+ m . 
Since the Poisson distribution is asymploticaEEy normal, it remains to 

show that the contribution of the second summand in (10) vanishes as v 
tends to infinity. 

We have 

< exp { - } -1 1 J 1 exp {[ex. (5) - 1J(v -.I 1 IA,,w;,, (,)I 

Since 

[cos (i/&) - I] ( U  - u) < 0 for u E (0, v) and (u)l G e (4, 
the last expression does not exceed 

* L 

Hence Theorem 1 holds. 

5. PPoof of TLorem 2. We first show that under the assumptions of 
Theorem 2 we have 



Palm distribution 

where 

vk 
Ak (v) = e-'- k = 0, 1,  2, ... 

k!' 

Since the probabilities Ak(v) satisfy the equations 

1 f o r k = O ,  
0 for k # Q,  

using (7) we can write 

+ ( ~ k - l l ~ ) - ~ k - l ~ ~ ) ) - ( ~ k ( ~ ) - ~ k ( ~ ) ) ,  k = I, 2, ... 
Putting 

~k (0) = P k  (4 - -4 (4, B k  (v) = nk (v) - Pk (u), k = 0, I, 2, . . . 

we introduce the generating functions 

Using (12) we obtain the differential equation 

Resolving this equation we have 

Let D stand for the differentiation operation with respect to z. Since 
I I 

I 
- .@k' A= (v)tz = 0 = iP)k (u) - Ak (v), 
k ? 



Further, we get 
V 

Using the formilla 

we can write 
Y 

Dki A, (v) = e-" j eu tf'U-U'(k) + v -  u)(~' Nz - 1) Br (u)] du 
0 

Further, we obtain 

(16) 13i(~-"(z- I)B, (u)l,=(, = D ' ~ - ~ ) Z Z B ~  ( U ) I ~ = ~ -  E)& - JI B. z( )1z=o 

= k - ~ ! ~ ~ ) - ~ u ) ,  k = 0 ,  1 , 2  ,..., j = 0 ,  1 ,..., k ,  

where we put p- (u) = 0. Substituting (16) in (153 we have 

Q lick) A, (v) z Ipk (v ) -Ak (v)l * z 
k= 0 k= 0 

xt V " v  - .y 
= e U  k=0 z o @ j = 0  z T ( ~ k - j ~ " ~ - b k - j - l ~ u ~ ) d u l  J. 

We write 



where, by definition, (u  - u)- I/(- I)! = 0. Therefore, we get 
ca w 

ti-@ (V--u)'-' 
lpr(0j-4(u)j = S-p 2 I j f-- k =  o m x o  j = o  j !  ij- I)! 

(4 dul 

Consequentlly, we obtain 
1 

(u-36)1 [ Z I - U ) ~ - ~  

0  I i 
and 

In the last inequality we applied Stirling's formula. Finally, we get 

By choosing u0 and v sdficiently large the last expressiora can be made 
arbitrarily small. Since Theorem 2 is true for the Poisson distribution (see 
[5]), the proof is complete. 

6. IPgmlF of Tkorem 3. Ht is sufficient to show that 

By (17) and the l o ~ a l  limit theorern for the Poisson distribution, TEeorem 3 
holds. 
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By the converse formula for the Fourier transformation of the sequences 
a,(v) and (14) we have 

1 " 
PJc (u)-AL ( 0 )  = -- 1 Aexpgtj (v )epi tkd t  

2n: 1, 

1 " u 

= - 1 (ei' - 1) exp jv (ef' - I)) [j exp {(I - eft) D,,,,,,i lu) d d  d t -  
2x -, o 

Replacing t by d,h. we get 

Further, we obtain . 

We now estimate the first integral in (18). Since 0 < t /2 , / i  < 742, 
choosing E > 0 sufficiently small we can find ar > 0 such that 
s in f t / kCh)  > mt/2,/';. Therefore, we obtain 



1 " u  ( ( a12pi(v-4))du +- 1 - ~ ( u )  1-exp - 
arc J v  b v-u 2 

Hence the first integral in (18) tends to zero as v -+ a. 
We now estimate the second integral in (18). Clearly, we have 

Therefore, we obtain 

We complete the proof of the theorem observing that 

and 
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