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PALM DISTRIBUTION AND LIMIT THEOREMS
FOR RANDOM POINT PROCESSES IN R”

BY

B.S. NAHAPETIAN (YEREVAN)

1. Imtroduction. The paper deals with homogeneous random point pro-
cesses in R". Our aim is to obtain sufficient conditions for asymptotic
normality of the number of points of a point process P in a ball when the
radius tends to infinity. These conditions are formulated in terms of Palm
distributions of the point process P. The proofs of the theorems stated below
are based on the relation between the distribution P of a point process in R”
and its Palm distribution due to Ambartzumian [1]. In the one-dimensional
case these relations reduce to the so-called Palm-Khinchin formulae [2].

2. Notation. Let M be the class of all countable subsets of R” such that
any me M has no cluster point in a bounded subset of R".

Define N(B, m) to be the number of points in Bnm, where B is a
bounded Borel set in R" and me M.

Denote by C the minimal o-algebra of subsets of M containing all subsets
of the form {m: N(B, m) =k}, k =0, 1, 2,... Any probability measure P on
C describes a random point process.

A random point process P is said to be homogeneous if, for any ceC,
P(tc) does not depend on re T, where T denotes the group of all translations
of R" and

]

te={m: t7*

mec!.

Further, we assume that for every bounded Borel set B in R”

(1) E,(N(B)=4|Bl, i< x,

where |B| is the volume of B. In other words, we consider the finite intensity °
case.
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3. Main results. Let S(v) be the sphere of volume v centred at the origin
in R". We consider the random number N (S(v)) of points of the process in
S (v} for large values of v.

N(S(v)) is called asymptotically normal if

2 '
L 1 o S2
. P(INS@)=k)>—— exp{———}ds as v — 00, ae R
ki~ Av)/vAv <z ( ( ) ) ‘\/2 ~§w 2 .
N(S(@) is cail’ed locally asymptoticaily normal in variation if
. ; 1 (k-wzlvjz}
P{N{S(v)) =k)j————==¢x %— :

N(S(v)) is called locally asymptotically normal if

* i
i P(N($ ) = k)—ﬁ oxp {2

@D

@ X

k=0

-0 as v—oo.

-0 as v— 0.

(4) sup
3

Note that each of the relations (3) and (4) 1mphes (2). It is known that
under the assumption (1) the limit

P{N(S@) =k} n{N(S(+h— S(u))=1})
H, P(N(S(+h—S@®)=1)

3 () =

exists [1].

We call this limit the spherical Palm distribution. This limit can be
“interpreted as the conditional probability of {N(S(v)) = k} under the con-
dition that a point of the random process P lies on the boundary of the
sphere S(v). By the Palm distribution we usually mean the conditional
probability of {N(S(v)) = k} under the condition that there is a point of the
process P at the origin. The spherical Palm distribution can<be found by
_ integration of the usual Palm distribution over the boundary of the sphere
S(v) (see [1]).

‘The conditions for asymptotic normality will be glven in terms of the
variational distance

a0

© =Y IPO-ml, P =P(NE@) =K.

k=0

We show that the above-mentioned types of asymptotic normality of
N (S(v)) are implied by various assumptions concerning the rate of conver-
gence of g{v) to zero as v tends to infinity. In this sense the condition on
the rate of convergence of g(v) to zero can replace the usual mixing con-
dition [3]. ' :
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In the sequel we prove the following theorems:
Tueorem 1. If :

1 v
lim — | o(w)du =0
‘ v oo vo
then N{S(v)) is asymptotically normal.
Tueorem 2. If

Oje o{u)du < w0,
0

then N (S (v)) is locally asymptotically normal in variation.
Tueorem 3. If

Y B¢ .
lim —~—jug(u)du=0,

v vo

then N(S(v)) is locally asymptotzcally normal.
The proofs of these theorems are based on the following Ambartzumian

relations (see [1]):

4P
Pl o)
(7 J
: Pi(vy . ‘
;u(v) = —-Am@)-m_;1(v), k=12,...,
1 for k=0,
P.(0) ={0 for k 0.

Further, without loss of generality we can assume that A = 1.

In the one-dimensional case, Theorems 1 and 2 were announced in [4].
. The role of the Palm distribution in the problems related to asymptotic
normality of N(S(v)) was first noticed by R.V. Ambartzumian to whom
Theorem 1 should be attributed. o

The author expresses his gratitude to Professor R. V. Ambartzumian for -
suggesting the present topic.

4. Proof of Theorem 1. Rewrite (7) in the form

d}z;v(”) — Po(0) +(Po (v) — o (v)),
@ J
p .
a;‘v(v) (Pk (V) =Py 1 (0)) + (P (v) — m () + (i - 1 () — Pi— 1 (0),
k=1,2,...
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We introduce the generating functions

@0

Lw)=73 P& Aw=Y (md)-Po)
k=0

k=0
for which from (8) we derive

di V
(9) j@:(z._l)nz(v)-k(z—l)Az(v), II.(0)=1.

Hence we get

(10) I, (v) = e D (z—1) =1 [ 17 4 (u)du.
0

The characteristic function of the distribution {P,(v)} can be obtained by
substituting z by €. Hence it is enough to show that for fixed t

exp {—it .\/{7} Iy 50y5) () — €xp {—t%/2} as v— .

Since the Poisson distribution is asymptotically normal, it remains to
show that the contribution of the second summand in (10) vanishes as v
tends to infinity.

We have

exp {—it/v} (exp {—E[—}—l) X

U

X } exp {[exp (—%)— IJ(U — u)} Aerpiiyvoy () du
0 N

v it '

_.[ exp {[exp (ﬁ)_ 1J(v—~u)}

< _t—/‘; i CXP {(COS _\;—E—' 1)(” - u) } IAcxp(i‘i‘/\/;) (u)] du.
Since
[cos(t/\/v)—11(v~u) < O for ue(0,v) and |Aupuvs @) < ¢(w),

the last expression does not exceed

’Aexp{it/\fl;] (u)l du

o(u)du.

[ —

t
Hence Theorem 1 holds.

5. Proof of Theorem 2. We first show that under the assumptions of
Theorem 2 we have

i [P ()= A4 ()] >0 as v— o0,

k=0
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where
k

0
Ak(v)=e u'k_!a i(:.:O, 15 23“'

Since the probabilities A, (v) satisfy the equations

dA
20 o0
(11)
A
;u(u) = (4O =AM @), k=1,2,...,
(1 for k=0,
Ak((’):{o for k #0,

using (7) we can write

d : ‘ ;
—(Po(v)— Ao (v)) = —(Po (v) — Ao (1)) —(mo (1) — Py (v)),

dv
(12)
d
E(Pk(v)—Ak (U))_= (Pk-l (v)— Ay (U))"(Pk(l’)“fik(”))'*‘
+(my- 1 @)= Poey (@) —(m () — P, (v)), k=1,2,...
Putting '

2%(0) = P(0)=A4(), B =m@—Pu(), k=0,1,2,...

we introduce the generating functions

Az(v) = Z ak(u)z", Bz(u) = Z Bk(v)zk-
k=0 k=0
Using (12) we obtain the differential equatiQn
13 ) A +e-DBO, A0=0

Resolving this equation we have

(14) A, (1) = (z—1)e~ V2 j e~ DB () dy.
. 0

Let D stand for the differentiation operation with respect to z. Since
b P ;

E{I_ID(” A, (0)z=0 = Pi(0)— 4, (0),
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we obtain .

) 4] 1

L, IP0= 0] = 3 5 [P Ao

k=0 =

Further, we get

DA, (5) = DY [(z—1)e" " [ 477 B, (u)du]
)]

= e [ ¢ DW "9 (z—1) B, (u)] du.
O .

Using the formula
DW ¥ u(z) = e (D+ AW u(z),
we can write

DWP 4 (v)=e"" 'jf """ (D +v—u® [(z—1) B, (u)] du

v—uy D% [(z—1) B, (u)] du.

e ez(v u}
j‘ JZO ]' (k -)'

Hence

p® A, (v)
k!

o g 0= uyD“‘ D (z—1) B, (1)
L D Y e e 1

du.

z=0

(15)

z=0
" Further, we obtain _
(16) D" P(z=1)B, Wl,mo = D 2B, (W), o— D" B (W),

= (k=) (Beeje s @)= Bue; @),  k=0,1,2,..., j=0,1,...,k,
where we put f_;(w) =0. Substitufing (16) in (15) we have

) v —
DRAO) oo (" C=ip . 10 )
. z=0 0 i=0
Hence
o s k) 4
T P-4 = 3 A
2 Sl K L,
o0 v k
=e " Z g- e 'Zo( (ﬁk - ﬁk -j- 1(“))
We write
Z (v— u)’(ﬁk ) =By () = ZO ((v;!u)’_(v(j—fi’)"!" )Bk_j(u)’
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wheré, by deﬁnition, (v—u)~/(—1)! = 0. Therefore, We get

geu Z ((U uy (U(;“ui’)' )ﬂk_j(u)d?

=}

S 1P @) A =e* 3
k=0

k=0 i=o\ J!
<ev ¥ Ee" ) (";”y ("(]”";J), Byl du
k=0 = J!
v _ i1
Qe"v(j)eu z (vj!u)’_(v(i_“i;! o (u)du
v w ; i1
=g ? j" & Z:O (Uj!u) (U(i_ui’)! o) dut
e } & ﬁn (vJ—.?u)j (v(l ui’)“' N
UO i= .
- Consequently, we obtain
A () o w :
(w)du <2 § g(u)du
f ; j! G- D! ¢ vjo
and D ,
., vo . o] (v—u)j' .(Umu)j—l
P o e LA
—» vo u[v—u] (v_u}i (U._u)]'—l
° ge ,-;o( i G- )Q(“)d“+
- L] u a (U__u)j 1 (U—u)’
+e ge . wZﬂﬂ( TR ) (u) du
v gy~ - © )
<c fe" v%g(u)dus—ﬁ\/%ﬁ £ ewdu, O0<c, <o

In the last inequality we applied Stirling’s formula. Finally, we get

-~

S 1P~ 40 < § ewair—L— T o,

v U—'Uo

By choosing v, and v sufficiently large the last expression can be made
arbitrarily small. Since Theorem 2 is true for the Poisson distribution (see
[5]), the proof is complete.

@, Proof of Theorem 3. It is sufficient to show that
17 sup|\/5Pk(u)-\/6A',‘(u)|~>0 as v—>o0.

. By (17) and the local limit theorem for the Pozsson dlstrxbutlon Theorem 3
holds.
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By the converse formula for the Fourier transformation of the sequences
o (v) and (14) we have
P, (v)— A (v) = %c— I‘n Aoy (v) e~ dt
— j72 (e" —‘1) exp {v(e'—1)} [E exp {(1 — ") u} Bypqr () du] dt.
Replacing t by t/\/a, we get |

N .
S P(0) = /v 4, (v) :zl—n i (exp{—lt——}—l)x ;

-1

oo oo s

Further, we obtain

(18)  |\/v Py(v)— /v 4, (v)]

O o e

v ‘v
jg(u)[ [} texp%——Z(u—u)sinZT\t/;}dt du

0

nvus

j Q(u)[ i texp{ ~2(v¥u)sin25\t/—5}dt:|du+

o'

vy t
g u tex {—2 v—u sinz—m—}dt}du, O<e<l.

We now estimate the first integral in (18). Since 0<I/2\/;<T[8/2,
choosing &> 0 sufficiently small we can find o>0 such that

sin(t/2\/17) > oct/2\/;. Therefore, we obtain

TC

e

1 i .z_t__} J
s (};Q(u)[j texp{ 2(v—u)sin 2\/5 dt |du
! }Q(u)limjuetexp{—a—z(v u)}dt}du

an®e*(v—u)
an\/—(f)na(u)<1 exp{ —-—2——-}>du

_ ! [Q(tt)(l—exp{—gn—izﬂjm—u)})du+
any/v o 2
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u an?e?(v—u)|
om\[ DUTQ u)( ~exp{— 2 })du

—,j@(u)du%— [ug(u u, 0<cy, c; <o0.
/v o \/v 0

Hence the first integral in (18) tends to zero as v — co.
We now estimate the second integral in (18). Clearly, we have

t o —
exp{—Zsinz——z\/_}<e“‘, nfve<t<m/v, 0<e<1, 0<c<o0.
v

Therefore, we obtain
o

. f Q(u) [JES texp{ ~2(é—u)sin2 Z\t/g}dt]du'
o Cav

jg(u)[ j_ te"“(““")dt]du =2
v

Ve 1

f e o(u)du
TC 0

=cy /v j e‘“g(u)du+c4\/5e"“" j e o(u)du,
vy
0<e3, <0, O<y< 1.

We complete the proof of the theorem observing that
vy vy

.\/;Je““’ [ e*o)du < \/;e*"’ e | o(u)du
0 0

v
=ve UV — [ ow)du—>0 as v—-o
v o

and

v

\/;e“"’ { e"o(udu < J } Q(u)du<\/5 } %Q(M)d”

vy

_fug(u)du—»O as v— 0.
%/5
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